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Abstract. New classes of exact solutions of the inhomogeneous Heisenberg ferromagnet 
equation are found by means of a geometrical technique. This technique consists of 
calculating one.parameter families of geodesics on surfaces in E’. Our Solutions correspond 
to geodesics on surfaces of rotation. 

1. Introduction 

In this paper we consider the classical version of the one-dimensional continuous 
system of spins with inhomogeneous nearest neighbour Heisenberg interaction. This 
model (called the inhomogeneous Heisenberg ferromagnet) is described by the follow- 
ing nonlinear system [l] 

s.2 = s A (fs),)q ( l a )  

S . S = l  

where S=S(x’, x’) ‘spin vector’ is E’-valued function of two real variables: x’-space 
variable and xz-time variable, the prime means differentiation, A (.) denotes the skew 
(scalar) product in E3, and, finally, f = f ( x ’ ,  x’) ‘coupling function’ is a given real 
function. There are some other physical systems which can be modelled by the system 
(1) [l]. The basic mathematical difficulties of the system (1) have been discussed in 
[2]. In the same paper some novel geometrical method to generate exact solutions to 
(1) has been set forth as well. 

The present paper constitutes an essential extension of [2]. In particular, the 
algorithm of [2] is now applied to a class of surfaces of rotation. This algorithm proves 
to be efficient: we present several classes of exact solutions to (1). Some of them seem 
to be of physical value. In general, the paper is an attempt to give a possibly complete 
discussion of the subject outlined in [Z]. 

0305-4470/93/061353+ 12907.50 @ 1993 IOP Publishing Ltd 1353 
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2. Physics of the model 

To begin with, let us discuss the underlying physics of the model (1). Consider the 
following mechanical system. Its configuration space is Sz x Sz x.. . x Sz (N times): 
an instantaneous position of the system is given by [ S , ,  S2, . . . , S,]. Thinking in terms 
of Hamiltonian formalism we can postulate the following general form of the equations 
of motion of our system 

%={SI, H) 
d t  

where H is Hamiltonian and { , } is the Poisson bracket. Plainly, any choice of H and 
{ , ) is assumed to respect the following constraints 

s , ( t ) .  $(t) = 1 ( j  = 1,2,. . . , N ) .  (3) 

Our choice of H is as follows 
N-l  

]=I  
H:= 1 f;(t)S,.S,,,  (4) 

where N - 1 functions f; are assumed to be given. 
Our choice of { , } is defined by the following relations 

3 

e - ,  
{s,” I si} S,k &.besf (5) 

where Sj’ are components of S,, S,, is Kronecker’s delta symbol, and, finally, 
the three-dimensional totally antisymmetric symbol. 

motion 

is 

The choices (4) and (9, when substituted into (2), give the following equations of 

(6) 
dS, I = & ( t ) S j  ~ S ~ + , + f i - ~ ( t ) S ~  AS]-]. 
d t  

Certainly, the dynamics (6) does not destroy (3). 
Physically, one would say that the discussed model describes a system of N classical 

(no quantum-mechanical operators!) spins arranged along a line and subject to 
inhomogeneous nearest-neighbour Heisenberg interaction. The standard ‘continuum 
limit’ procedure performed on the model (6) leads to the model (1). Surely, the 
replacements j H x‘, t Y x2 are used. From now on we discuss this continuum version 
of our model, that is, the inhomogeneous Heisenberg ferromagnet (IHF) model exclus- 
ively. Intuitively, our model describes an open physical system. Indeed, for any solution 
S(x’, x ’ )  of IHF model (1) the following identity holds 

gSzt 9*, = (Inlfl).z8 (7) 

Equation (7) admits the following physical interpretation: 8 is the energy of our 
system, 9 is the energy flow density (almost momentum density) of our system, and, 
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finally, (In[ f 1 ) e 2 8  is the energy source intensity. Certainly, the case J2 = O  implies 
conservation of energy in our system: in general, the energy is not conserved (system 
is open). 

The final observation is that the amount of emitted (absorbed) energy (per second) 
in our system is proportional to the energy density. A similar situation occurs in other 
physical systems, e.g. in systems of photons. 

3. Non-integrability of the model 

The IHF model (1)  can he transformed into the following nonlinear system [ l ]  

iq.,+( fq),’’ +2qR = 0 (90) 

R.1 = ( f  1ql2),i+f4ql’ (9b) 
for two unknowns: complex function q = q ( x I ,  x’) and real function R = R(x’, x’). 
The system (9) is called the inhomogeneous nonlinear Schrodinger (INS) equation. In 
fact, there exists (almost) a bijection between the smooth solution space of (1) and 
the smooth solution space of (9). This result, in tum, strongly suggests that the system 
(1) is integrable (in a sense of soliton theory) if the system (9) is integrable. Hence, 
to isolate the integrable cases of (1) one could work with, in a sense, the simpler 
system (9). 

Indeed, for instance, Calogero and Degasperis proved the integrability of (9) for 
f (x’, x’) = ax’+ b ( a  and b are real constants) 131. This result can be easily extended 
to a, b being x’ dependent. Are there any other integrable cases? 

Several ‘integrability tests’ have been formulated in the literature [4-91. To our best 
knowledge, the most general integrable case of (9) is given by f ( x ’ , x ’ ) =  
a(x’)xl+ b(x’). Infact,intheforthcomingpaper[lO] weshallshowthattheapplication 
of two independent tests leads to the conclusion above. 

This paper concerns a general (non-integrable) case. 

4. Geometry of the model 

One can associate some geometry of geodesics with the discussed model 121. Consider 
an arbitrary smooth surface ;S in .E3. It is equipped (locally) in the so-called semi- 
geodesic coordinates, that is, orthogonal coordinates x’ and x’ meeting the requirement: 
x2 = constant lines are geodesics on Z. As a result, the metric on Z assumes a form 

I =  (dx’)’+g(dx2)2 (10) 

where g=g(x’,  x’) is some positive function. On the other hand, the second funda- 
mental form 

I1 = bll(duL)’+2bl2dx1 dx2+b22(dx2)’ (11) 

where b, = b,(xl, x’) are some functions, is still arbitrary. 
As is well known from differential geometry, the coefficients of (10) and (11) 

necessarily satisfy the so-called Gauss-Mainardi-Codazzi equations. Simultaneously, 
the position vector r = r (xI ,  x’) to Z displays some ‘kinematics’, too: one can interpret 
r(x’, x2) as an evolution (in ‘time x”) of some string moving throughout E’. 
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In this way we set up the geometric setting to unify a few physical models. Indeed, 
upon the identification 

where + is subject to the constraint +,, = b12/&, and 
q = t h  exp(i#) (12a) 

f = -&/bit (126)  

one can show that the Gauss-Mainardi-Codai equations can be rewritten as the 
system (9). Interestingly enough, one of Mainardi-Codazzi equations admits a physical 
interpretation as the energy balance equation (7). 

R t(+b-.z - b22/&) 

Simultaneously, the ‘kinematics’ of the position vector r (x ’ ,  x’) is given by 
rc2 = f i r ,  A nt, (13) 

and, finally S:= r.l solves the IHF model equations (1). 

corresponding solution S to (1) is as follows: 
To sum up, our ‘technology’ to generate both: the ‘coupling function’ f and the 

(1) Select a surface 
(2) Compute one-parameter family of geodesics on Z (in general a set of geodesics 

(3) Compute the corresponding semi-geodesic coordinate system. 
(4) Compute the corresponding functions g and bo, then ( a )  the resulting ‘coupling 

function’ is given by (12b), and (b) the resulting spin solution S to (1) (withfgiven 
by ( a ) )  is 

The most critical point of the algorithm is the second one: the success of the method 
depends on our abilities to integrate the equations of geodesics on E. From this point 
of view, the most tractable class of surfaces are surfaces of rotation. In a sense this 
paper constitutes a detailed discussion of the algorithm above applied to the surfaces 
of rotation. 

in E’. 

on a surface is ‘2-manifold’). 

5. Geodesics on surfaces of rotation 

The surface of rotation, when referred to the standard parameters: s (arc length of 
generator) and rp (azimuthal angle), is given by 

r(s, rp) =[x(s), r(s) cos rp, Y ( S )  sin rpl (14) 
where x = x(s), y = y ( s )  define the generator of the surface of rotation. The metric and 
the second fundamental form read 

I=ds2+y2 drp2 
I1 = (.f$ -X j )  ds2+yi  dp2 

where the dot denotes differentiation with respect to s. 
From (15a) we can compute the Christoffel symbols and form the corresponding 

equations for a geodesic r (s (u) ,  rp(u)) on the surface (14) (u-arc length parameter 
along the geodesic). Most of the Christoffel symbols vanish and the resulting equations 
can be read as: 

s., -y$(p, )Z = 0 (16a) 
rp.- + 2y-‘yrpt,s., = 0. (166) 
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(16) can be integrated once to yield 

p., = Ay-’ 

(s,,)’ = 1 - A’Y-~ 

where A is a constant. (17a) is equivalent to the famous Clairaut relation [ll]. From 
(17) we deduce 

where U,, B are constants, and %(A) is some function of A with values within the 
domain of y ( s ) .  There is no loss in generality in putting uo= 0. In this way we have 
obtained a two (A, B )  parameter family of geodesics on the surface of rotation (14). 

We rewrite (18) as foUows 

Surely, we assume (19a) can be inverted 

s = s ( u ;  A) (20a) 

q=q(s (u ;A) ;A ,B) :=q(u ;A ,B) .  (206) 

(20) is a (formal) general integral of the equations of geodesics on the surface of 
rotation (14). 

Before entering into the further steps of our algorithm of section 4, we shall present 
two technical lemmas which enable one to simplify further calculations. 

and, as a result, 

Lemma 1. Functions (19) satisfy the constraint 

(~sa-App.A)., = 0 

in other words we can always put u . ~ - A ~ ) . ~ : =  F(A). 

On use of (17), lemma 1 can be proved directly. It is less trivial to show that the 
following sufficient conditions (22a) or (226) lead to F(A)  = O .  

Lemma 2. Suppose the functions (20) satisfy either 

s(0; A) = 0 and rp(O:A,B)=O 

or 
d O ; ‘ % B ) = O  and p,(O; A, B )  =A-’ 

then the functions (19) are subject to the constraint 

ulA = AV., . (23) 

We point out that in all the cases discussed in subsequent sections one of the conditions 
(22) is always satisfied, and, hence (23) holds, too. 
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Let us choose a one-parameter family of geodesics: A = A( 7) and B = B( 7) in such 
a way that 

(U, - (4 PI  (24) 

s = s( U ;  A( 7)) ( 2 5 4  

is a local diffeomorphism. To he more explicit, on the use of (196)  and (20a) we have 

and 

P = d d u ;  4 7 ) ) ;  A ( d ,  WT)). (25b)  
Surely, new local coordinates (U, 7) are characterized by properties: 7 =  constant line 
is a geodesic, and U is the arc length parameter along the geodesic. It is almost a 
semi-geodesic coordinate system: still it is not an orthogonal one. Indeed, one can 
show that the metric (15a) in (U, T) coordinates assumes the form 

(26) 
where prime denotes d/dT, y = y ( s ( u ;  A(T))), and urA = (~/JA)u(s;  A) is evaluated at 
s = s ( u ;  A(T)) and A=A(T). It is worth remarking that in establishing (26) one uses 
(23).  

I = (du+AB‘ d7)’+ (y2 -A2) (B’+AA-1~ .~ )Z  d7’ 

Surely, new coordinates 

x ’ = u +  A(t )B’( t )dt  (270)  

(276) xZ= 7 

I‘ 
are semi-geodesic: 

I = (dx’)’+ (y’ -A2)(B’+A‘A-’u~A)’(dx2)* 

where all involved functions are to depend on XI and xz. 

form (1 1) in the discussed case. 
For completeness we shall list now all the coefficients of the second fundamental 

b , ,  =(k2A2-(yz-A2)~jJ)/$X (29a)  

bl2 = g’”A(y2- a 2 ) ” 2 ( i Z + y j i ) / y 3 i  (29b)  
b 2 2 = g ( 2 ( y z - A 2 ) - A z ~ j i ) / ~ 3 i  

where 
i= * ( l - ) i 2 ) ’ / 2  

g = ( Y 2 - ~ 2 ) ( ~ ’ + ~ f ~ - L ~ . A ) 2 .  

and g, see (10) and (28), is given by 

Once more we point out that in (29)  and (30) all the involved functions should depend 
explicitly on x1 and x2. This condition, in turn, requires the explicit knowledge of 
(20a). As a rule, this is the most critical point in the discussed setting. 

To sum up, starting from the general surface of rotational (14), we have just 
described a method to compute a generic semi-geodesic coordinate system upon it. 
This, in turn, means that we are in a position to start up calculations of exact solutions 
to IHF model equations (1) described in section 4. The output results are described 
below. 
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6. New classes of solutions to IHF model equations 

We are now able to establish the following general result. 

Theorem. On use of (29a) and (30) 

is computed as a function of xl, x2, then necessarily 

.=[.id-, y d m c o s ' p - - s i n ' p ,  y 1 -  - sin'p+-cos'p 

as a function of x',  x2 solves the IHF model equations (1) with f given by (31). 

f = - Glhi (31) 

(32) 
A .  Y d--(y " 1  y 

Several remarks are in order. 
(i) Formula (32) represents a pretty large class of solutions to our model equations. 

(ii) In (32) x is given by (30a). 
(iii) In general, formula (32) is implicit. It is explicit if, and only if, all the functions 

of (32) depend explicitly on x1 and xz. This, in tum, means we have to know (20a) 
explicitly, as well. 

(iv) The sign ambiguity of square roots in (31) and (32) is resolved by the obvious 
requirement that the RHS of (31) and (32) should be smooth functions: the square root 
always changes a sign at a 'point of retum', e.g. at point of root vanishing. 

(v) In any case one should respect the obvious conditions: y2>A2 and j z S  1. 
Fortunately, the condition (iii) can be satisfied in many cases. Some of them are 

listed in two subsequent tables. Before entering into some details of the tables, we 
proceed to the discussion of some general feature of the class (32) which, mathemati- 
cally, is coded in (27), whereas physically, represents a phenomenon of wave propaga- 
tion throughout an inhomogeneous medium. 

Let us look more closely into the structure of (32). (32) is built from the following 
ingredients: y. 2.9, 'p and A. A depends upon x2 in a trivial way: A = A(x2), whereas 
the dependence of y, x, y and 'p and x1 and x 2  i s  fairly complicated. For instance, 

These are parametrized by arbitrary functions: y = y ( s ) ,  A = A(x2) and E = E ( x 2 ) .  

y=y(s)=y[s(w;A))=y s x - A(t)B'(t)dt;A(X2) )] . (33) [ ( ' ra 
Similar expressions can be written down for the remainder: i, j. and 'p. 

to  the^ 'physical' argument 
In our opinion, it is a pretty remarkable result that all this geodesic setting leads 

x1-jx2A(t)Er(f)  dt  (34) 

in (32). Indeed, the presence of (34) in (32) means that our generic solution (32) 
describes a modulated (by A(x2) )  travelling wave with variable (due to inhomogeneity!) 
phase velocity Spb(x2) =A(x2)i3'(x2). 

In particular, the choice 

A(x2)  =constant and E ( x 2 )  =x2 (35) 
kills A-modulations, and the resulting wave is propagated with a constant phase 
velocity. Geometrically, this choice means that we select arbitrarily some geodesic on 
the surface of rotation and, subsequently, we rotate it steadily around x-axis. The 
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simplest geodesic on the surface of rotation is the meridian of the surface (A(x2) =O). 
In the discussed case (A(x2)  =0, B(x2) =x2) the following simplifications occur 

s(x1, x') =x' and Lp(x', 2) = xz (36) 

and, correspondingly, 

is a function of XI exclusively, whereas (32) assumes a simple form 

~ ( x ' ,  x2) = [JI - [Y .~(X ' ) I~ ,  pl(xl) cos x2, pI(xI) sin x']. (38) 

In (37) and (38) ~ ( x ' )  is an arbitrary function fulfilling the constraint y?, S 1. We recall 
that thanks to (30a) and (36) y = y ( x l )  defines a generator of the surface of rotation, 
and, as a result, an instantaneous spin configuration is identical with the distribution 
of unit tangent vectors to the meridian ('spin on meridians'). 

On using (37) and (38), we can immediately produce a good deal of solutions to 
(1). The problem is to isolate some physically interesting cases. Several such solutions 
are collected in table 1. Notice that the coupling function of the case 9 is positive (we 
assume the square root changes its sign at the points of square root vanishing), while 
in other cases we can easily makefpositive by an appropriate choice of the p-parameter 
value. Basically, our model (1) describes two different cases: the ferromagnetic one (f 
is positive), and the antiferromagnetic one (f is negative). Thus, table 1 concems the 
ferromagnetic case. 

The functions f listed in table 1 are regular for any x1 E R and bounded (the only 
exception is the case 10). The coupling functions f of cases 2-7 and the corresponding 
solutions S are periodic. The examples 8 and 9 deserve special attention. The coupling 
function of 9 has a 'bell-like' shape and tends to 0 for x' + i m .  In the case 8 f tends 
to a constant ( y2)  for XI + 500 and has one minimum, for x1 = 0. In both of these cases 
S+[1,0,0] for xl+*m. 

To find any one-parameter family of geodesics different from meridians is not an 
easy task: the integrals (18) are not trivial for A # 0. Nevertheless in several cases, 
listed in table 2, we found explicit expressions for s = s(u; A)  and rp = rp(u; A, B) in 
terms of elementary functions. To obtain the coupling function f and the solution S, 
one has to substitute s = $(w; a) and rp = rp(u; u, B), given in the table 2, into (29) 
and (30) and to use our theorem. The obtained solutions are usually much more 
complicated than those of the table 1, especially where their dependence on x2 is 
concerned. The coupling functions are not positive, which may cause difficulties in 
the physical interpretation of these results. The cases 1, 2 and 3 of table 2 were 
considered in [2]. In case 1 (cylinder) the coupling function 

f =  -(pu'/sinz a)a-(p2B'cos a/sin2 a) (390) 

S=[cosu, -sinasin(B+(u/p) sinu),  sinu cos(B+(u/p)sina)] (39b) 

is a solution to the integrable sub-case of (1). Also, the choice (35) corresponds to the 
integrable sub-case f = constant. 

is a function linear in XI. Thus the solution S obtained by our method 

In case 2 (sphere) the coupling function 

f = -u'sin u- B'cos a cos U (40a) 
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is periodic and bounded, and the corresponding solution is 

S = [cos a cos U, -cos B sin U - sin a sin B cos U, cos B cos U sin a -sin B sin U ]  

(40b) 

The coupling function corresponding to case 3 (cone) is unbounded 

f = a-’ tan ?(a‘- B‘o sin y )  (U’+ (41a) 

and the corresponding solution still has a rather simple form 

S =  ( U ~ + ( Y ~ ) - ~ ’ ~ [ U  cos y, as in  y cos p-a  sin p, U sin y sin p +a cos p]. (41b) 

We collect the formulae (39)-(41) in order to correct some misprints in the paper [2]. 

7. Concluding remarks physics 

Interestingly enough, the important physical quantities, energy density and energy flow 
density (S), can be expressed in a purely geometrical way: 

g= -1r 2 g b , ,  (42a) 

9 ’ = 4 b b , ,  (426) 

where g and b, are defined in (10) and (11)  correspondingly. Thus, on using (29) and 
(30) we are in a position to compute 8 and 9’ in the discussed case. For instance, in 
the case of ‘spins on meridians’ (A(x2)  =0) we have 

P=O (43) 

(stationary state). Also, for a general solution associated with the sphere (40) equation 
(43) holds. 

Physically interesting solutions are characterized, for example, by bounded energy 
density (42a). Every solution from table 1 has this property, whereas snme of the 
solutions gathered in table 2 have an unbounded energy density. Nevertheless, by an 
,appropriate choice of parameters (usually A(x2)  = constant) we can make the energy 
density bounded. 

Generic coupling functions f of table 1 are always positive and bounded. This 
implies that solutions of this table represent states of the ferromagnet. 

The case off being a negative function (antiferromagnet models) deserves a special 
attention. First of all, we notice that equations (1) admit the following discrete symmetry 

S -  -s and f--f 
which enables one to generate antiferromagnet solutions from ferromagnet solutions. 
On the other hand, the continuum limit of the antiferromagnet model, in contrast to 
the ferromagnet one, seems to be of a limited value. Presumably, within the continuum 
approximation, one can study states far from the stable equilibrium only. Fortunately, 
our solutions seem to satisfy this requirement. 
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Finally, we point out that a general coupling function of table 2 is of a variable 
sign. The same applies to the celebrated case of the integrable model f ( x ’ ,  xz) = 
a ( x 2 ) x ’ + b ( x 2 ) .  Can one attribute any physical meaning to the cases of this kind? 

8. Concluding remarks: geometry 

In this paper we conhed ourselves almost completely to the discussion of the case 
of surfaces of rotation. The subject of the geodesics on surfaces of rotation seems to 
be a well established piece of classical differential geometry. Interestingly enough, 
some of our computational observations discussed in the paper (e.g. two lemmas) seem 
to be novel in this context. 

This ‘geodesic’ method offers some promising possibilities to compute new classes 
of the exact solutions to IHF model equations (1). One open possibility is related to a 
fascinating and still fresh subject of the geodesics on quadrics [12]. To point out a 
more exotic case which, perhaps, deserves a special study, we recall that there exist 
the so-called Zoll surfaces. A surface is called the 2011 surface if all its geodesics are 
closed [13]. 

Finally, we point out that our approach admits a nice geometric formulation. It 
tums out that the totality of all (complete) geodesics of some Riemannian manifolds 
M can be also organized as a new manifold G ( M )  [14]. The essence of our method 
can be described as follows: we are interested in drawing curves on G ( M )  where M 
is a surface in E’. 
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